IF1 N-7

A Technique for the Efficient Computation of the Periodic
Green’s Function in Layered Dielectric Media

R.M. Shubair and Y.L. Chow

Department of Electrical and Computer Engineering
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

ABSTRACT

This paper presents a novel technique for the efficient
computation of the periodic Green’s function in layered
dielectric media. This technique is based upon approxi-
mating the spectral Green’s function by a set of inverse-
transformable complex exponential functions. This enables
the use of Poisson’s summation formula (o express the
periodic Green’s function as a combination of a spectral
series and a spatial serics each of which is rapidly conver-
gent. The proposed technique is useful as it can be applied
to a wide class of problems where periodic structures are to
be modeled.

1 INTRODUCTION

‘When modeling periodic structures in layered dielectric
media, one usually encounters a Green’s function which
converges very slowly. In using the moment method to
determine the radiation or scattering from a periodic array,
repeated evaluations of the Green’s function series are
required to fill in the impedance matrix of the structure being
modeled. The slow convergence of the series would,
therefore, result in a considerable amount of computation
time. Previous researchers could only manage to propose
accelerating techniques which are limited to the free-space
periodic Green’s function [1-4]. Thus, a technique which
overcomes the slow convergence of the Green’s function
series and yet can apply to a wide class of problems would
be desirable. This paper provides such a technique for
periodic structures embedded in general layered media.

393

CH3141-9/92/0000-0393$01.00 © 1992 IEEE

Thetechnique uses Prony’s method [5,6] toapproximate
thespectral Green’s functionby aset of complex exponential
functions which are analytically inverse TFourier-
transformable. It is the asymptoticbehavior of these spectral
exponential functions which causes the slow convergence
of the Green's function series. To overcome this problem,
a procedure similar to that used for the free-space periodic
Green’s function [4] is implemented. In this procedure, the
asymptotic behavior is first subtracted out in the spectral
domain and then added back in closed-form in the spatial
domain., This is achieved through the use of Poisson’s
summation formula. The final solution of the periodic
Green’s function would, therefore, consist of a combination
of a spectral series and a spatial series, each of which is by
itself rapidly convergent. This makes the overall mixed
spectral-spatial summation of the periodic Green’s function
also rapidly convergent. Hence, the contribution of this
paper is to provide a technique that combines the complex
image theory presented in [5,6] with the accelerating pro-
cedure of [4] to efficiently compute the periodic Green’s
function in layered media.

As an application of the technique presented in this
paper, numerical experiments have been conducted to
compute the periodic Green’s function of a two-dimensional
array of dipole point sources printed on a microstrip sub-
strate. The results show the number of terms required for
the mixed spectral-spatial summation to converge for
different values of the substrate thickness and relative
permittivity.
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2 THEORY

The periodic Green’s function of a two-dimensional
array of phase shifted point-sources can be expressed in
terms of a spectral sum that has the general form

1 . TplE=2) —j (r-¥) )
Gy= 5 2 26 €7
; 2mm
where K = ke +— %)
; 2mn
k’m = ky +T

also a and b represent the x- and y- periodicities of the
structure. k; and k} are wavenumbers associated with the
phaseshifted plane wave. G represents the spectral Green’s
function of a dipole point source above a general layered
media structure as shown in Fig.1. It can be writlen in the
form

G = 1 [e Ko=) | p ,z.)] @)

where R represents the spectral reflection coefficient due to
the layered media as shown in Fig.1. Its specific expression
can be obtained from the problem under consideration,
e€.g. [5,6].

1t is well known that the spectral series summation in (1)
is slowly convergent, especially for the "on-plane" case
where z =2'. To overcome the slow convergence problem
we first approximate the spectral reflection cocfficient R by
a short series of exponential functions, i.c.
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where A; and B, are complex coefficients obtained by the

application of Prony’s method [5,6]. From (4) into (3), G,,,,
becomes
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The advantage of the short serics approximation of R as
given in (4) becomes now evident as the inverse Fourier-
transformation of G, in (5) would now yield a closed-form
spatial expression for G,,,.

The next step is to introduce an attenuation constant u
such that
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Clearly from (2) as m,n—>o, we¢ can take

k,— —j\/kfm +kyz,, +u’ By replacing this asymptotic value
of k, into (5), the asymptotic behavior of G,,, is obtained as
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By adding and subtracting this asymptotic G4, from (1)

one obtains
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Now employing Poisson’s summation formula [7] to
replace the second spectral sum in (8) by an equivalent
spatial sum, one obtains the final form of the periodic
Green’s function as

1 5 Koy HkalE-x) ik (y-y)
P ab g ?(Gmn - Gmn)'e -€ (9)

+

.ki jki b
G e
pLa



where

~uRy"
G =<
mn mn
4nRg

mn
—uR;

[4
4R

N
+ 2 A

i=1

Ry =V -x'~may +(y - y'-nb} +(z -2'} (10)

R =vlx -x"~ma)’ +(y -y' -nbY +(z -2’ -B;)’

The attenuation constant # is found numerically so the
second series in (9) converges most rapidly.

The first series in (9) converges rapidly because two
functions are being subtracted out that are asymptotically
equalas m and» increase. The secondseriesin (9) converges
rapidly because the spatial functions involved decay expo-
nentially as m and n increase. Therefore, the slowly
convergent summation of (1) has been successfully replaced
by a combination of two rapidly convergent series as given
in (9).

3 NUMERICAL RESULTS

Asanumerical example, we used the direct sum formula
of (1) and the accelerated sum formula of (9) to evaluate the
Green’s function series of a two-dimensional array of
x-directed dipole point sources printed on a microstrip
substrate. Results have been obtained for diffcrent values
of the substrate parameters /2 and €, which represent the
substrate thickness and relative permittivity, respectively.

The Green’s function example being evaluated here is
G which is the ££-component of the dyadic vector
potential. Its specificexpression for the microstrip substrate
problem is given in the Appendix. Figs.2 and 3 show the
number of terms in the accelerated sum formula (9) required
to achieve a predefined convergence criteria versus the
transverse distance. The results in these figures are shown
for the on-plane case where the direct sum formula of (1)
has the slowest convergence. For the rangeof the transverse
distance (p - p') investigated, it is found that the direct sum
formula requires over one million terms to converge to
machine precision compared to only 2,000 terms at most
using the accelerated sum formula. This clearly proves the
significant reduction achieved in computation time by uti-
lizing (9) for the evaluation of the periodic Green’s function.
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4 CONCLUSIONS

This paper presented a new technique for the efficient
computation of periodic Green’s functions. In comparison
with other techniques which are applicable only to the
free-space periodic Green’s function, our technique can be
casily used for periodic Green’s functions in general layered
media. This makes it of a great potential importance as it
can be applied to a wide class of problems where the
modeling of periodic structures is required.

Appendix

For a dipole point source located above a microstrip
substrate, the ££-component of the dyadic vector potential
is given in the spectral domain by

oL 1 ka2 el +2)
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where Ry is the TE-wave reflection coefficient due to the
grounded slab. Its expression is given by
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whererjy issimply the reflection coefficient of the TE -wave
at the dielectric-air inteeface. It is given by
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Fig.2 Number of terms versus transverse distance,
f=30GHz, 5, =255 a=b =1.1)\‘,,kj=k;-0

396

*xy.d

L.

3

o {x\y',2)

05070077

VIEIIIIIT PP I I 7L ISP I I T s 777 7 d 7772077047777
ground ptane

Fig.1 A dipole point source above a layered media struc-
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Fig.3 Number of terms versus transverse distance,
f=30GHz, ¢, =98,a=b =11, kimkin0



